3.6.43 \(\int \frac {\cot (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [543]

Optimal. Leaf size=150 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

-2*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d+arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/
2)/d+arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(3/2)/d+2*b^2/a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3650, 3734, 3620, 3618, 65, 214, 3715} \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 b^2}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/(
(a - I*b)^(3/2)*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/((a + I*b)^(3/2)*d) + (2*b^2)/(a*(a^2 + b
^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {\cot (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx &=\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {2 \int \frac {\cot (c+d x) \left (\frac {1}{2} \left (a^2+b^2\right )-\frac {1}{2} a b \tan (c+d x)+\frac {1}{2} b^2 \tan ^2(c+d x)\right )}{\sqrt {a+b \tan (c+d x)}} \, dx}{a \left (a^2+b^2\right )}\\ &=\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt {a+b \tan (c+d x)}} \, dx}{a}+\frac {2 \int \frac {-\frac {a b}{2}-\frac {1}{2} a^2 \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a \left (a^2+b^2\right )}\\ &=\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a-b)}-\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{a d}\\ &=\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b) d}-\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b) d}+\frac {2 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{a b d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(i a-b) b d}+\frac {\text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b (i a+b) d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 b^2}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.21, size = 165, normalized size = 1.10 \begin {gather*} \frac {-\frac {2 \left (a^2+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\frac {a (a+i b) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {a (a-i b) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}+\frac {2 b^2}{\sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right ) d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((-2*(a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] + (a*(a + I*b)*ArcTanh[Sqrt[a + b*Tan[c +
d*x]]/Sqrt[a - I*b]])/Sqrt[a - I*b] + (a*(a - I*b)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/Sqrt[a + I
*b] + (2*b^2)/Sqrt[a + b*Tan[c + d*x]])/(a*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.74, size = 39358, normalized size = 262.39

method result size
default \(\text {Expression too large to display}\) \(39358\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)/(b*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 5795 vs. \(2 (122) = 244\).
time = 2.08, size = 11665, normalized size = 77.77 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(2)*((a^12 + 3*a^10*b^2 + 2*a^8*b^4 - 2*a^6*b^6 - 3*a^4*b^8 - a^2*b^10)*d^5*cos(d*x + c)^2 + 2*(a^
11*b + 4*a^9*b^3 + 6*a^7*b^5 + 4*a^5*b^7 + a^3*b^9)*d^5*cos(d*x + c)*sin(d*x + c) + (a^10*b^2 + 4*a^8*b^4 + 6*
a^6*b^6 + 4*a^4*b^8 + a^2*b^10)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^9 - 6*a^5*b^4 - 8*a^3*b^6 -
3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((9*a^4*b^2
 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*(1/(
(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(-((3*a^12 + 14*a^10*b^2 + 25*a^8*b^4 + 20*a^6*b^6 + 5*a
^4*b^8 - 2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b
^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^9 + 8*a^7*
b^2 + 6*a^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6
+ 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + sqrt(2)*((a^14 + 5*a^12*b^2 + 9*a^10*b^4 + 5*a^8*b^6 - 5*a^6*b^8 - 9
*a^4*b^10 - 5*a^2*b^12 - b^14)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^
6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (a^11 + 5*a^
9*b^2 + 10*a^7*b^4 + 10*a^5*b^6 + 5*a^3*b^8 + a*b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b
^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
- (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 -
6*a^2*b^4 + b^6))*sqrt(((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^
2*b^4 + b^6)*d^4))*cos(d*x + c) + sqrt(2)*((9*a^9 + 12*a^7*b^2 - 2*a^5*b^4 - 4*a^3*b^6 + a*b^8)*d^3*sqrt(1/((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + (9*a^6 - 15*a^4*b^2 + 7*a^2*b^4 - b^6)*d*cos(d*x + c))*
sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2
 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))
*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5 - 6*a^3*b^2 + a*b^4)*cos(d*x + c) + (9*a^4*b - 6
*a^2*b^3 + b^5)*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) + sqrt(2)*((3*
a^16 + 14*a^14*b^2 + 22*a^12*b^4 + 6*a^10*b^6 - 20*a^8*b^8 - 22*a^6*b^10 - 6*a^4*b^12 + 2*a^2*b^14 + b^16)*d^7
*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 +
b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^13 + 14*a^11*b^2 + 25*a^9*b^4 + 20*a^7*b^
6 + 5*a^5*b^8 - 2*a^3*b^10 - a*b^12)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 +
 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^9 - 6*a^5*b^
4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))
*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*
a^4*b^2 - 6*a^2*b^4 + b^6)) + 4*sqrt(2)*((a^12 + 3*a^10*b^2 + 2*a^8*b^4 - 2*a^6*b^6 - 3*a^4*b^8 - a^2*b^10)*d^
5*cos(d*x + c)^2 + 2*(a^11*b + 4*a^9*b^3 + 6*a^7*b^5 + 4*a^5*b^7 + a^3*b^9)*d^5*cos(d*x + c)*sin(d*x + c) + (a
^10*b^2 + 4*a^8*b^4 + 6*a^6*b^6 + 4*a^4*b^8 + a^2*b^10)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^9 -
6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4
 + b^6))*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2
*b^10 + b^12)*d^4))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(((3*a^12 + 14*a^10*b^2 + 25*a^8
*b^4 + 20*a^6*b^6 + 5*a^4*b^8 - 2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2
+ 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*
d^4)) + (3*a^9 + 8*a^7*b^2 + 6*a^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 1
5*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - sqrt(2)*((a^14 + 5*a^12*b^2 + 9*a^10*b^4 + 5*
a^8*b^6 - 5*a^6*b^8 - 9*a^4*b^10 - 5*a^2*b^12 - b^14)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b
^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^
6)*d^4)) + (a^11 + 5*a^9*b^2 + 10*a^7*b^4 + 10*a^5*b^6 + 5*a^3*b^8 + a*b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 +
 b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4
*b^2 + 3*a^2*b^4 + b^6 - (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^
6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt(((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^2*sqrt(1/(
(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)/(a + b*tan(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 4.44, size = 2500, normalized size = 16.67 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)/(a + b*tan(c + d*x))^(3/2),x)

[Out]

log(((((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) + a^3*d^2 -
3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*((((((8*a^3*d^2 - 24*a*b^2*d^2)^2/
64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) + a^3*d^2 - 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 +
 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*(512*a^8*b^28*d^8 - (a + b*tan(c + d*x))^(1/2)*((((8*a^3*d^2 - 24*a*b^
2*d^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) + a^3*d^2 - 3*a*b^2*d^2)/(4*(a^6*d^4 +
b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*(512*a^9*b^28*d^9 + 5376*a^11*b^26*d^9 + 25344*a^13*b^24*d^9
+ 70656*a^15*b^22*d^9 + 129024*a^17*b^20*d^9 + 161280*a^19*b^18*d^9 + 139776*a^21*b^16*d^9 + 82944*a^23*b^14*d
^9 + 32256*a^25*b^12*d^9 + 7424*a^27*b^10*d^9 + 768*a^29*b^8*d^9) + 5248*a^10*b^26*d^8 + 23936*a^12*b^24*d^8 +
 64000*a^14*b^22*d^8 + 111104*a^16*b^20*d^8 + 130816*a^18*b^18*d^8 + 105728*a^20*b^16*d^8 + 57856*a^22*b^14*d^
8 + 20480*a^24*b^12*d^8 + 4224*a^26*b^10*d^8 + 384*a^28*b^8*d^8) + (a + b*tan(c + d*x))^(1/2)*(256*a^8*b^26*d^
7 + 1472*a^10*b^24*d^7 + 3712*a^12*b^22*d^7 + 6272*a^14*b^20*d^7 + 9856*a^16*b^18*d^7 + 14336*a^18*b^16*d^7 +
15232*a^20*b^14*d^7 + 10112*a^22*b^12*d^7 + 3712*a^24*b^10*d^7 + 576*a^26*b^8*d^7))*((((8*a^3*d^2 - 24*a*b^2*d
^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) + a^3*d^2 - 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6
*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2) - 128*a^7*b^26*d^6 - 128*a^9*b^24*d^6 + 2592*a^11*b^22*d^6 + 109
76*a^13*b^20*d^6 + 20384*a^15*b^18*d^6 + 20832*a^17*b^16*d^6 + 11872*a^19*b^14*d^6 + 3232*a^21*b^12*d^6 + 96*a
^23*b^10*d^6 - 96*a^25*b^8*d^6) - (a + b*tan(c + d*x))^(1/2)*(1120*a^15*b^16*d^5 - 352*a^9*b^22*d^5 - 672*a^11
*b^20*d^5 - 224*a^13*b^18*d^5 - 64*a^7*b^24*d^5 + 2016*a^17*b^14*d^5 + 1568*a^19*b^12*d^5 + 608*a^21*b^10*d^5
+ 96*a^23*b^8*d^5))*((((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1
/2) + a^3*d^2 - 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2) + log((-(((8*a^3*d
^2 - 24*a*b^2*d^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) - a^3*d^2 + 3*a*b^2*d^2)/(4
*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*(((-(((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 - b^6*d^4 -
 a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) - a^3*d^2 + 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4
 + 3*a^4*b^2*d^4)))^(1/2)*(512*a^8*b^28*d^8 - (a + b*tan(c + d*x))^(1/2)*(-(((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 -
 b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) - a^3*d^2 + 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a
^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*(512*a^9*b^28*d^9 + 5376*a^11*b^26*d^9 + 25344*a^13*b^24*d^9 + 70656*a^15*
b^22*d^9 + 129024*a^17*b^20*d^9 + 161280*a^19*b^18*d^9 + 139776*a^21*b^16*d^9 + 82944*a^23*b^14*d^9 + 32256*a^
25*b^12*d^9 + 7424*a^27*b^10*d^9 + 768*a^29*b^8*d^9) + 5248*a^10*b^26*d^8 + 23936*a^12*b^24*d^8 + 64000*a^14*b
^22*d^8 + 111104*a^16*b^20*d^8 + 130816*a^18*b^18*d^8 + 105728*a^20*b^16*d^8 + 57856*a^22*b^14*d^8 + 20480*a^2
4*b^12*d^8 + 4224*a^26*b^10*d^8 + 384*a^28*b^8*d^8) + (a + b*tan(c + d*x))^(1/2)*(256*a^8*b^26*d^7 + 1472*a^10
*b^24*d^7 + 3712*a^12*b^22*d^7 + 6272*a^14*b^20*d^7 + 9856*a^16*b^18*d^7 + 14336*a^18*b^16*d^7 + 15232*a^20*b^
14*d^7 + 10112*a^22*b^12*d^7 + 3712*a^24*b^10*d^7 + 576*a^26*b^8*d^7))*(-(((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 - b
^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) - a^3*d^2 + 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a^2
*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2) - 128*a^7*b^26*d^6 - 128*a^9*b^24*d^6 + 2592*a^11*b^22*d^6 + 10976*a^13*b^20
*d^6 + 20384*a^15*b^18*d^6 + 20832*a^17*b^16*d^6 + 11872*a^19*b^14*d^6 + 3232*a^21*b^12*d^6 + 96*a^23*b^10*d^6
 - 96*a^25*b^8*d^6) - (a + b*tan(c + d*x))^(1/2)*(1120*a^15*b^16*d^5 - 352*a^9*b^22*d^5 - 672*a^11*b^20*d^5 -
224*a^13*b^18*d^5 - 64*a^7*b^24*d^5 + 2016*a^17*b^14*d^5 + 1568*a^19*b^12*d^5 + 608*a^21*b^10*d^5 + 96*a^23*b^
8*d^5))*(-(((8*a^3*d^2 - 24*a*b^2*d^2)^2/64 - b^6*d^4 - a^6*d^4 - 3*a^2*b^4*d^4 - 3*a^4*b^2*d^4)^(1/2) - a^3*d
^2 + 3*a*b^2*d^2)/(4*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2) - log(((a^3*d^2 + (6*a^2*b^4*
d^4 - b^6*d^4 - 9*a^4*b^2*d^4)^(1/2) - 3*a*b^2*d^2)/(4*a^6*d^4 + 4*b^6*d^4 + 12*a^2*b^4*d^4 + 12*a^4*b^2*d^4))
^(1/2)*(((a^3*d^2 + (6*a^2*b^4*d^4 - b^6*d^4 - 9*a^4*b^2*d^4)^(1/2) - 3*a*b^2*d^2)/(4*a^6*d^4 + 4*b^6*d^4 + 12
*a^2*b^4*d^4 + 12*a^4*b^2*d^4))^(1/2)*(((a^3*d^2 + (6*a^2*b^4*d^4 - b^6*d^4 - 9*a^4*b^2*d^4)^(1/2) - 3*a*b^2*d
^2)/(4*a^6*d^4 + 4*b^6*d^4 + 12*a^2*b^4*d^4 + 12*a^4*b^2*d^4))^(1/2)*(((a^3*d^2 + (6*a^2*b^4*d^4 - b^6*d^4 - 9
*a^4*b^2*d^4)^(1/2) - 3*a*b^2*d^2)/(4*a^6*d^4 + 4*b^6*d^4 + 12*a^2*b^4*d^4 + 12*a^4*b^2*d^4))^(1/2)*(a + b*tan
(c + d*x))^(1/2)*(512*a^9*b^28*d^9 + 5376*a^11*b^26*d^9 + 25344*a^13*b^24*d^9 + 70656*a^15*b^22*d^9 + 129024*a
^17*b^20*d^9 + 161280*a^19*b^18*d^9 + 139776*a^21*b^16*d^9 + 82944*a^23*b^14*d^9 + 32256*a^25*b^12*d^9 + 7424*
a^27*b^10*d^9 + 768*a^29*b^8*d^9) + 512*a^8*b^2...

________________________________________________________________________________________